C)

1)

cams;das

1)

cams;das

Question

asked 2021-03-24

A 2.4-kg object is attached to a horizontal spring of forceconstant k=4.5 kN/m. The spring is stretched 10 cm fromequilibrium and released. Find (a) the frequency of themotion, (b) the period, (c) the amplitude, (d) the maximum speed,and (e) the maximum acceleration. (f) When does the objectfirst reach its equilibrium position? What is itsacceleration at this time?

Two identical blocks placed one on top of the other rest on africtionless horizontal air track. The lower block isattached to a spring of spring constant k= 600 N/m. Whendisplaced slightly from its equilibrium position, the systemoscillates with a frequency of 1.8 Hz. When the amplitude ofoscillation exceeds 5 cm, the upper block starts to slide relativeto the lower one. (a) What are the masses of the twoblocks? (b) What is the coefficient of static frictionbetween the two blocks?

Two identical blocks placed one on top of the other rest on africtionless horizontal air track. The lower block isattached to a spring of spring constant k= 600 N/m. Whendisplaced slightly from its equilibrium position, the systemoscillates with a frequency of 1.8 Hz. When the amplitude ofoscillation exceeds 5 cm, the upper block starts to slide relativeto the lower one. (a) What are the masses of the twoblocks? (b) What is the coefficient of static frictionbetween the two blocks?

asked 2021-05-04

Assume that a 1.00-kg ball is thrown solely by the action of the forearm, which rotates about the elbow joint under the action of the triceps muscle. The ball is accelerated uniformly from rest to 10.0 m/s in 0.350 s, at which point it is released. Calculate (a) the angular acceleration of the arm, and (b) the force required of the triceps muscle. Assume that the forearm has a mass of 3.70 kg and rotates like a uniform rod about an axis at its end.

asked 2021-03-12

A 75.0-kg man steps off a platform 3.10 m above the ground. Hekeeps his legs straight as he falls, but at the moment his feettouch the ground his knees begin to bend, and, treated as aparticle, he moves an additional 0.60 m before coming torest.

a) what is the speed at the instant his feet touch theground?

b) treating him as a particle, what is his acceleration(magnitude and direction) as he slows down, if the acceleration isassumed to be constant?

c) draw his free-body diagram (see section 4.6). in termsof forces on the diagram, what is the net force on him? usenewton's laws and the results of part (b) to calculate the averageforce his feet exert on the ground while he slows down. expressthis force in newtons and also as a multiple of his weight.

a) what is the speed at the instant his feet touch theground?

b) treating him as a particle, what is his acceleration(magnitude and direction) as he slows down, if the acceleration isassumed to be constant?

c) draw his free-body diagram (see section 4.6). in termsof forces on the diagram, what is the net force on him? usenewton's laws and the results of part (b) to calculate the averageforce his feet exert on the ground while he slows down. expressthis force in newtons and also as a multiple of his weight.

asked 2021-02-19

An airplane propeller is 2.08 m in length (from tip to tip) and has a mass of 117 kg. When the airpline's engine is first started, it applies a constant torque of \(\displaystyle{1950}\ {N}\cdot{m}\) to the propeller, which starts from rest.

a) What is the angular acceleration of the propeller? Model the propeller as a slender rod.

b) What is the propeller's angular speed after making 5.00 revolutions?

c) How much work is done by the engine during the first 5.00 revolutions?

e) What is the instantaneous power output of the motor at the instant that the propeller has turne through 5.00 revolutions?

a) What is the angular acceleration of the propeller? Model the propeller as a slender rod.

b) What is the propeller's angular speed after making 5.00 revolutions?

c) How much work is done by the engine during the first 5.00 revolutions?

e) What is the instantaneous power output of the motor at the instant that the propeller has turne through 5.00 revolutions?